《数学思想与方法》

发布时间:2015-08-24

229

"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它无处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。

  一、数学的特点

  数学的三大特点严谨性、抽象性、广泛的应用性。所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。

  什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。

  中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。

  比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。

  数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。

  至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。

二、高中数学的特点

往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。

1、理论加强2、课程增多3、难度增大4、要求提高

三、掌握数学思想

高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:数形结合思想,运动思想,转化与变换思想,分类讨论思想,函数与方程思想。

  例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。

  再看看下面这个运用"矛盾"的观点来解题的例子。

  已知动点Q在圆上移动,定点P(2,0),求线段PQ中点的轨迹。

  分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。

   ②③显然,用代入的方法,消去①中的就可以求得所求轨迹。

  数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。

  有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。

  在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

  要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。

  中学数学中经常用到的数学思维策略有:

  以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。

四、学习方法的改进

身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢?

  现实告诉我们,大胆改进学习方法,这是一个非常重要的问题。

  (一)学会听、读  我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们的听和读对不对呢?

  让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。

  学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。

  听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法?

  "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。

  阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。

  比如,学习对数函数,从知识上来讲,通过阅读,应弄请以下几个问题:

  (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数?

  (2)指数函数在什么情况下有反函数?若有,其反函数如何表示?

  (3)指数函数的图象与对数函数的图象是什么关系?

  (4)对数函数有什么性质?

  (二)学会思考

爱因斯坦曾说:"发展独立思考和独立判断的能力应当始终放在首位",勤于思考善于思考是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。

1、善于发现问题和提出问题

    科学史上的每一项重大发现都是从问题开始的。牛顿发现万有引力是从“苹果为什么会落地”这一问题开始的。弗莱明发现青霉素是从“为什么霉菌菌落周围不长细菌”开始的。

2、善于反思

课后反思、题后反思、章节反思、试后反思

二、《解密数学思维的内核》

1、数学解题的思维过程

数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。

 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。

第一阶段:理解问题是解题思维活动的开始。

第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 

第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

2、数学解题的技巧

为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

  • 熟悉化策略

所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

常用的途径有:

(一)、充分联想回忆基本知识和题型:

按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

(二)、全方位、多角度分析题意:

对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

(三)恰当构造辅助元素:

数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

二、简单化策略

所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

1、寻求中间环节,挖掘隐含条件:

在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

2、分类考察讨论:

在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

3、简单化已知条件:

有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

4、恰当分解结论:

有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

三、直观化策略:

所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

(一)、图表直观:

 有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

(二)、图形直观:

有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

(三)、图象直观:

不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

四、特殊化策略

所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

五、一般化策略

所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

六、整体化策略

所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

七、间接化策略

所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。

3、数学解题思维过程

    数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。

在数学中,通常可将解题过程分为四个阶段:

第一阶段是审题。包括认清习题的条件和要求,深入分析条件中的各个元素,在复杂的记忆系统中找出需要的知识信息,建立习题的条件、结论与知识和经验之间的联系,为解题作好知识上的准备。

   第二阶段是寻求解题途径。有目的地进行各种组合的试验,尽可能将习题化为已知类型,选择最优解法,选择解题方案,经检验后作修正,最后确定解题计划。 

第三阶段是实施计划。将计划的所有细节实际地付诸实现,通过与已知条件所选择的根据作对比后修正计划,然后着手叙述解答过程的方法,并且书写解答与结果。

第四阶段是检查与总结。求得最终结果以后,检查并分析结果。探讨实现解题的各种方法,研究特殊情况与局部情况,找出最重要的知识。将新知识和经验加以整理使之系统化。

所以:第一阶段的理解问题是解题思维活动的开始。

第二阶段的转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。

第三阶段的计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

第四阶段的反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

通过以下探索途径来提高解题能力:

  • 研究问题的条件时,在需要与可能的情况下,可画出相应图形或思路图帮助思考。因为这意味着你对题的整个情境有了清晰的具体的了解。
  • 清晰地理解情境中的各个元素;一定要弄清楚其中哪些元素是给定了的,即已知的,哪些是所求的,即未知的。
  • 深入地分析并思考习题叙述中的每一个符号、术语的含义,从中找出习题的重要元素,要图中标出(用直观符号)已知元素和未知元素,并试着改变一下题目中(或图中)各元素的位置,看看能否有重要发现。
  • 尽可能从整体上理解题目的条件,找出它的特点,联想以前是否遇到过类似题目。
  • 仔细考虑题意是否有其他不同理解。题目的条件有无多余的、互相矛盾的内容?是否还缺少条件?
  • 认真研究题目提出的目标。通过目标找出哪些理论的法则同题目或其他元素有联系。
  • 如果在解题中发现有你熟悉的一般数学方法,就尽可能用这种方法的语言表示题的元素,以利于解题思路的展开。

以上途径特别有利于开始解题者能迅速“登堂入室”,找到解题的起步点。在制定计划寻求解法阶段,最好利用下面这套探索方法:

  • 设法将题目与你会解的某一类题联系起来。或者尽可能找出你熟悉的、最符合已知条件的解题方法。
  • 记住:题的目标是寻求解答的主要方向。在仔细分析目标时即可尝试能否用你熟悉的方法去解题。
  • 解了几步后可将所得的局部结果与问题的条件、结论作比较。用这种办法检查解题途径是否合理,以便及时进行修正或调整。
  • 尝试能否局部地改变题目,换种方法叙述条件,故意简化题的条件(也就是编拟条件简化了的同类题)再求其解。再试试能否扩大题目条件(编一个更一般的题目),并将与题有关的概念用它的定义加以替代。
  • 分解条件,尽可能将分成部分重新组合,扩大骒条件的理解。
  • 尝试将题分解成一串辅助问题,依次解答这些辅助问题即可构成所给题目的解。
  • 研究题的某些部分的极限情况,考察这样会对基本目标产生什么影响。
  • 改变题的一部分,看对其他部分有何影响;依据上面的“影响”改变题的某些部分所出现的结果,尝试能否对题的目标作出一个“展望”。
  • 万一用尽方法还是解不出来,你就从课本中或科普数学小册子中找一个同类题,研究分析其现成答案,从中找出解题的有益启示。

*************************************************************                                                                                                                                                                                                    

附录:

波利亚给出了详细的“怎样解题”表,在这张表中启发你找到解题途径的一连串问句与建议,来表示思维过程的正确搜索程序,其解题思想的核心在于不断地变换问题,连续地简化问题,把数学解题看成为问题化归的过程,即最终归结为熟悉的基本问题加以解决。

4、 怎样解题 

G . 波 利  亚

第一:你必须弄清问题

弄清问题:

未知数是什么?已知数据是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?把条件的各部分分开。你能否把它们写下来?

第二:找出已知数与未知数之间的联系。如果找不出直接的联系,你可能不得不考虑辅助问题,你应该最终得出一个求解的计划。

拟订计划:

你以前见过它吗?你是否见过相同的问题而形式稍有不同?

你是否知道与此有关的问题?你是否知道一个可能用得上的定理?

看着未知数!试想出一个具有相同未知数或相似未知数的熟悉的问题。

这里有一个与你现在的问题有关,且早已解决的问题。

你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了利用它,你是否应该引入某些辅助元素?

你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?

回到定义去。

如果你不能解决所提出的问题,可先解决一个与此有关的问题。你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适于确定未知数的其它数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?

你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的所有必要的概念?

第三:实现你的计划  

实现计划:

实现你的求解计划,检验每一步骤。

你能否清楚地看出这一步骤是否正确的?你能否证明这一步骤是正确的?

第四:验证所得的解

回顾:

你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出来?你能不能把这个结果或方法用于其它的问题?

三、数形结合思想

数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。

数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。

中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

  • 设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。

A.充分非必要条件   B.必要非充分条件   C.充要条件   D.既不充分也不必要条件

  • 若log2<log2<0,则_____。

A. 0<a<b<1     B. 0<b<a<1     C. a>b>1     D. b>a>1

  • 如果,那么函数f(x)=的最小值是_____。 

A.-2           B. -1         C. 7            D. 23

  • 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。

A.增函数且最小值为-5                B.增函数且最大值为-5

C.减函数且最小值为-5                D.减函数且最大值为-5  

  • 设全集I={(x,y)|x,y∈R},集合M={(x,y)| =1},N={(x,y)|y≠x+1},那么等于_____。  

A.  φ          B. {(2,3)}      C. (2,3)      D. {(x,y)|y=x+1   

  • 如果θ是第二象限的角,,那么是_____。

A.第一象限角    B.第三象限角    C.可能第一象限角,也可能第三象限角    D.第二象限角

  • 如果实数x、y满足等式(x-2)+y=3,那么的最大值是_____。  

A.        B.       C.          D. 

例1. 已知函数y=,求函数的最小值及此时x的值。

例2.若方程lg(-x+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围。

 y
  4         
  1
  O    2   3     x

例3、定义域内不等式〉x+a恒成立,求实数a的取值范围。

例4、若方程lg(kx)=2lg(x+1)只有一个实数解,求常数k的取值范围。

课后练习:

  • 已知5x+12y=60,则的最小值是_____。

A.      B.      C.      D. 1

  • 已知集合P={(x,y)|y=}、Q={(x,y)|y=x+b},若P∩Q≠φ,则b的取值范围是____。

A. |b|<3     B.  |b|≤3     C. -3≤b≤3     D.  -3<b<3

  • 方程2=x+2x+1的实数解的个数是_____。

A.  1      B.  2     C.  3     D.以上都不对

  • 方程x=10sinx的实根的个数是_______。
  • 若不等式m>|x-1|+|x+1|的解集是非空数集,那么实数m的取值范围是_________。
  • 若方程x-3ax+2a=0的一个根小于1,而另一根大于1,则实数a的取值范围是______。
  • 设A={x|1<x<3},又设B是关于x的不等式组的解集,试确定a、b的取值范围,使得AB。  
  • 解不等式:   >b-x

四、分类讨论思想

分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。

1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:

(1)涉及的数学概念是分类讨论的;

(2)运用的数学定理、公式、或运算性质、法则是分类给出的;

(3)求解的数学问题的结论有多种情况或多种可能性;

(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;

(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的。

2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用。根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏 ,包含各种情况,同时要有利于问题研究。

Ⅰ、再现性题组:

1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若AB,那么a的范围是_____。

A.  0≤a≤1    B.  a≤1      C.   a<1        D.  0<a<1

2.若a>0且a≠1,p=log(a+a+1),q=log(a+a+1),则p、q的大小关系是_____。

A. p=q     B. p<q     C. p>q     D.当a>1时,p>q;当0<a<1时,p<q

3.函数y=的值域是_________。

4.若θ∈(0, ),则的值为_____。

A. 1或-1         B. 0或-1     C. 0或1     D. 0或1或-1

5.函数y=x+的值域是_____。

A.  [2,+∞)      B. (-∞,-2]∪[2,+∞)    C. (-∞,+∞)     D. [-2,2]

6.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为_____。

A.       B.         C.        D. 

7.过点P(2,3),且在坐标轴上的截距相等的直线方程是_____。

A. 3x-2y=0     B. x+y-5=0     C. 3x-2y=0或x+y-5=0    D.不能确定

Ⅱ、示范性题组:

例1. 设0<x<1,a>0且a≠1,比较|log(1-x)|与|log(1+x)|的大小。

例2. 已知集合A和集合B各含有4个元素,A∩B含有2个元素,试求同时满足下面两个条件的集合C的个数:  ①. CA∪B且C中含有3个元素;   ②. C∩A≠φ  。

例3. 解不等式>0  (a为常数,a≠-)

例4. 设函数f(x)=ax-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围。

、巩固性题组:

  • 若log<1,则a的取值范围是_____。

A. (0, )     B. (,1)     C. (0, )∪(1,+∞)     D. (,+∞)

  • 非零实数a、b、c,则的值组成的集合是_____。

A. {-4,4}     B. {0,4}     C. {-4,0}      D. {-4,0,4}

  • f(x)=(a-x)|3a-x|,a是正常数,下列结论正确的是_____。

A.当x=2a时有最小值0          B.当x=3a时有最大值0

C.无最大值,且无最小值         D.有最小值但无最大值

4. 函数f(x)=ax-2ax+2+b  (a≠0)在闭区间[2,3]上有最大值5,最小值2,则a、b的值为_____。

   A.  a=1,b=0           B. a=1,b=0或a=-1,b=3

   C.  a=-1,b=3        D. 以上答案均不正确

5.到空间不共面的4个点距离相等的平面的个数是_____。

   A.  7     B.  6     C.  5      D.  4

6. 函数f(x)=(|m|-1)x-2(m+1)x-1的图像与x轴只有一个公共点,求参数m的值及交点坐标。

五、等价转化思想方法

等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

1. f(x)是R上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于_____。

   A. 0.5      B. -0.5      C.  1.5       D. -1.5

2.设f(x)=3x-2,则f[f(x)]等于______。

   A.      B.  9x-8      C. x      D. 

3. 若m、n、p、q∈R且m+n=a,p+q=b,ab≠0,则mp+nq的最大值是______。

   A.      B.       C.         D. 

例1. 若x、y、z∈R且x+y+z=1,求(-1)( -1)( -1)的最小值。

例2. 设x、y∈R且3x+2y=6x,求x+y的范围。

例3. 求值:(1)ctg10°-4cos10°    (2)

  (3)   (4)    (5)

例4. 已知f(x)=tgx,x∈(0, ),若x、x∈(0, )且x≠x

求证:[f(x)+f(x)]>f()     

课后练习:

1. 当x∈[0, ]时,求使cosx-mcosx+2m-2>0恒成立的实数m的取值范围。

2. 函数f(x)=|lgx|,若0<a<b时有f(a)>f(b),则下列各式中成立的是_____。

   A.  ab≤1    B.  ab<1     C.  ab>1     D.  a>1且b>1

3. 已知点M(3cosx,3sinx)、N(4cosy,4siny),则|MN|的最大值为_________。

4. 函数y=的值域是____________。

5. 不等式log(x+x+3)>log(x+2)的解是____________。

6.设x>0,y>0,求证:(x+y)>(x+y)   

六、三角恒等变换

  • 化简(1)

       (2)

        (3)

         (4)

  • 求证:(1)

         (2)

  • (1)已知,求的值;

(2)已知,求证

(3)已知的值。

  • 三角满足,求证

七、三角函数式在解三角形中的应用

重难点归纳  

(1)运用方程观点结合恒等变形方法巧解三角形;

(2)熟练地进行边角和已知关系式的等价转化;

(3)能熟练运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘  

1、在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为30°的B处,到11时10分又测得该船在岛北60°西、俯角为60°的C处。

求船的航行速度是每小时多少千米;

2、△ABC为直角三角形;(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形  以上正确命题的个数是(    )

A  1  B  2   C  3   D  4

3、  在△ABC中,已知A、B、C成等差数列,则的值为__________  

4、  在△ABC中,A为最小角,C为最大角,已知cos(2A+C)=-,sinB=,则cos2(B+C)=__________  

5、  已知圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4,求四边形ABCD的面积  

6、 在△ABC中,a、b、c分别为角A、B、C的对边,  

(1)求角A的度数;

(2)若a=,b+c=3,求b和c的值  

八、练习

1  函数y=-x·cosx的部分图象是(    )

 

2  函数f(x)=cos2x+sin(+x)是(    )

A  非奇非偶函数 B  仅有最小值的奇函数

C  仅有最大值的偶函数 D  既有最大值又有最小值的偶函数

3  函数f(x)=()|cosx在[-π,π]上的单调减区间为_________  

4  设ω>0,若函数f(x)=2sinωx在[-,]上单调递增,则ω的取值范围是_________  

5  设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α、β为何实数恒有f(sinα)≥0和f(2+cosβ)≤0  

(1)求证  b+c=-1;

(2)求证c≥3;

(3)若函数f(sinα)的最大值为8,求b,c的值  

6  有一块半径为R,中心角为45°的扇形铁皮材料,为了获取面积最大的矩形铁皮,工人师傅常让矩形的一边在扇形的半径上,然后作其最大内接矩形,试问  工人师傅是怎样选择矩形的四点的?并求出最大面积值  

7  设-≤x≤,求函数y=log2(1+sinx)+log2(1-sinx)的最大值和最小值  

8  是否存在实数a,使得函数y=sin2x+a·cosx+a-在闭区间[0,]上的最大值是1?若存在,求出对应的a值;若不存在,试说明理由  

参考答案  

1  解析  函数y=-xcosx是奇函数,图象不可能是A和C,又当x∈(0, )时,y<0  

答案  D

2  解析 f(x)=cos2x+sin(+x)=2cos2x-1+cosx=2[(cosx+]-1 

答案  D

3  解  在[-π,π]上,y=|cosx|的单调递增区间是[-,0]及[,π]  而f(x)依|cosx|取值的递增而递减,故[-,0]及[,π]为f(x)的递减区间  

4  解  由-≤ωx≤,得f(x)的递增区间为[-,],由题设得

5  解  (1)∵-1≤sinα≤1且f(sinα)≥0恒成立,∴f(1)≥0

∵1≤2+cosβ≤3,且f(2+cosβ)≤0恒成立  ∴f(1)≤0  

从而知f(1)=0∴b+c+1=0  

(2)由f(2+cosβ)≤0,知f(3)≤0,∴9+3b+c≤0  又因为b+c=-1,∴c≥3  

(3)∵f(sinα)=sin2α+(-1-c)sinα+c=(sinα-)2+c-()2,

当sinα=-1时,[f(sinα)]max=8,由解得b=-4,c=3  

6   解  如下图,扇形AOB的内接矩形是MNPQ,连OP,则OP=R,设∠AOP=θ,则∠QOP=45°-θ,NP=Rsinθ,在△PQO中,

∴PQ=Rsin(45°-θ)  

S矩形MNPQ=QP·NP=R2sinθsin(45°-θ)

=R2·[cos(2θ-45°)-]≤R2

当且仅当cos(2θ-45°)=1,即θ=22  5°时,S矩形MNPQ的值最大且最大值为R2  

工人师傅是这样选点的,记扇形为AOB,以扇形一半径OA为一边,在扇形上作角AOP且使∠AOP=22  5°,P为边与扇形弧的交点,自P作PN⊥OA于N,PQ∥OA交OB于Q,并作OM⊥OA于M,则矩形MNPQ为面积最大的矩形,面积最大值为R2  

7  解  ∵在[-]上,1+sinx>0和1-sinx>0恒成立,

∴原函数可化为y=log2(1-sin2x)=log2cos2x,

又cosx>0在[-]上恒成立,

∴原函数即是y=2log2cosx,在x∈[-]上,≤cosx≤1  

∴log2≤log2cosx≤log21,即-1≤y≤0,也就是在x∈[-]上,ymax=0, ymin=-1  

综合上述知,存在符合题设  

课前后备注  

九、三角函数的图像与性质